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1. Introduction to LIBS 

Laser-induced breakdown spectroscopy (LIBS) is a spectroscopic analysis technique that uses 
the light emitted from a laser-generated microplasma to determine the composition of a sample 
based on elemental and molecular emission intensities (1).  The ability of LIBS to provide rapid, 
multi-element microanalysis of bulk and residue samples (solid, liquid, gas, and aerosol) in the 
parts-per-million range with little or no sample preparation has been widely demonstrated (2–9) 
and is the greatest advantage of LIBS compared with other analytical approaches.  Field-portable 
LIBS instruments have been demonstrated for many applications, including the determination of 
lead (Pb) in soil and paint (10), the online sorting of wood (11), and the analysis of paints and 
coatings (12).  Standoff LIBS instruments have been demonstrated at distances >100 m for 
environmental (13) industrial (14, 15), cultural heritage (16), and geological (17, 18) applications.  
Figure 1 shows a diagram of a simple LIBS system and lists several key advantages. 

 

 

Figure 1.  Diagram of a typical LIBS system.  The laser (~GW/cm2) is focused onto the 
sample surface with a lens, resulting in the ablation of a small amount of material 
and the subsequent formation of microplasma above the sample surface.  The light 
emitted from the plasma is collected and focused onto a fiber optic attached to a 
spectrometer, which spectrally and temporally resolves the light.  A PC displays 
and analyzes the recorded spectra, which are characteristic of the target material.
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LIBS has the following properties:  (1) it requires no sample preparation; (2) is sensitive enough 
that only nanograms–picograms of  material is required for production of a usable LIBS 
spectrum; (3) provides real-time (<1 s) response; (4) LIBS sensors can be made rugged and field-
portable; (5) all components (i.e., laser, detector, computer, etc.) can be miniaturized; and (6) 
LIBS offers the flexibility of point detection or standoff mode operation.  LIBS used in 
conjunction with broadband detectors (ultraviolet [UV]-visible[VIS]-near-infrared[NIR] spectral 
range) can determine the elemental composition of any target material since every element on the 
periodic table has characteristic atomic emission lines in the UV-VIS-NIR spectral range.  
Although most early LIBS applications involved metal targets, LIBS has recently been applied to 
a variety of materials including plastics and other organic compounds, biological materials, and 
hazardous substances. No other sensor is capable of real-time detection of all classes of chemical 
compounds in all states of matter with no sample preparation. 

2. Background/Expertise 

Researchers at the U.S. Army Research Laboratory (ARL) in the Weapons and Materials 
Research Directorate (WMRD) have been developing LIBS for a variety of applications since 
the early 1990s.  ARL has used LIBS for the detection of Halon alternative agents (19, 20), 
tested a field-portable LIBS system for the detection of lead in soil and paint (10), studied the 
spectral emission of aluminum and aluminum oxide from bulk aluminum in different bath gases 
(21), performed kinetic modeling of LIBS plumes (22–25), and demonstrated the detection and 
discrimination of geological materials (18, 26–31), plastic landmines (32, 33), explosives (34–42), 
and chemical and biological warfare agent surrogates (43–47).  ARL has also published a number 
of reviews on LIBS (8, 48–52).  Figure 2 shows photographs of several ARL LIBS systems:  (a) 
a laboratory LIBS setup, (b) a commercial LIBS system by Ocean Optics, Inc., (c) a prototype 
man-portable LIBS device, and (d) a prototype standoff LIBS system developed for 100+ m 
detection and discrimination of explosive residues. 

3. Example Applications 

3.1 Identification of Materials 

The identification of metals is the most straightforward application of LIBS, since most metals 
have strong atomic emission intensities in the ultraviolet and visible regions.  Figure 3 shows the 
broadband LIBS spectra of several high purity metal foils, demonstrating distinct differences in 
the emission spectra.  The spectra were recorded with a double-pulse laser system (two 420 mJ 
laser pulses at 1064 nm separated by 2 s) with an argon gas flow.  Most of the emission lines 
above 700 nm are due to the argon. 
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Figure 2.  Photographs of ARL LIBS systems:  (a) a laboratory LIBS setup, (b) a 
commercial LIBS system by Ocean Optics, Inc., (c) a prototype man-portable 
LIBS device, and (d) a prototype standoff LIBS system developed for 100+ m 
detection and discrimination of explosive residues. 

 

Figure 3.  Double-pulse LIBS spectra of aluminum (99.999%), copper (99.999%), nickel 
(99.98%), tin (99.998%), and Ti (99.998%) under an argon bath gas.

(a) (b) 

(c) (d) 

Aluminum 

Copper 

Nickel 
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With recent advances in broadband spectrometers and chemometric analysis techniques, the 
identification of non-metals has become increasingly widespread with LIBS.  LIBS has been 
used for the identification of polymers (43–57), thermoplasts (58–60), and other organic 
compounds (61, 62), including explosives (34–42, 63–65).  Figure 4 shows the LIBS spectra of 
various thermoplastic polymers from McMaster-Carr acquired with a commercial LIBS system 
(Applied Photonics, Ltd).  Strong emission lines from carbon (C), hydrogen (H), nitrogen (N), 
oxygen (O), cyanogen (CN), and diatomic carbon (C2) are present in the spectra. 

 

 

Figure 4.  Single-pulse LIBS spectra of various thermoplastics from McMaster-Carr acquired 
on a commercial LIBS system (Applied Photonics, Ltd.). 

 
3.2 Material Characterization 

Another important application for LIBS is material characterization, i.e., trace impurity 
identification.  The ability of LIBS to detect trace impurities in different aluminum alloys is 
demonstrated in figure 5.  Observed impurity emission lines include beryllium (Be), copper (Cu), 
iron (Fe), magnesium (Mg), manganese (Mn), nickel (Ni), silicon (Si), tin (Sn), strontium (Sr), 
titanium (Ti), and zinc (Zn).  Table 1 lists the certified impurity concentrations for each NIST 
alloy; the red text indicates that no emission lines were observed in the LIBS spectra for the 
specified element and alloy. 
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Figure 5.  Single-pulse LIBS spectra of pure aluminum, three NIST-certified standard alloys, and alumina 
(Al2O3).  Observed trace impurities include Be, Cu, Fe, Mg, Mn, Ni, Si, Sn, Sr, Ti, and Zn. 

 

Table 1.  NIST-certified standard concentrations of impurities in aluminum alloys by percent weight (red text 
indicates emission lines for that element were not observed). 

 Be 
(%) 

Cr 
(%) 

Cu 
(%) 

Fe 
(%) 

Mg 
(%) 

Mn 
(%) 

Ni 
(%) 

Pb 
(%) 

Si 
(%) 

Sn 
(%) 

Sr 
(%) 

Ti 
(%) 

V 
(%) 

Zn 
(%) 

Al 1256b — 0.0572 3.478 0.865 0.0637 0.3857 0.4135 0.1075 9.362 0.35 0.0188 0.877 0.0212 1.011 
AL 1259 0.025 0.173 1.60 0.205 2.48 0.079 0.063 — 0.18 — — — — 5.44 
AL 1715 — 0.034 0.0494 0.199 4.474 0.3753 0.0195 0.015 0.1553 — 0.0002 0.0335 0.0174 0.0505

 

LIBS has also been used for the characterization of solder materials.  Increasing environmental 
concerns have led to the introduction of “green” replacements for lead-containing solder 
materials.  Unlike older solder materials that consist primarily of lead, these “lead-free” solders 
are predominantly tin that has been alloyed with small amounts of copper or silver.  Because 
high-content tin materials have been shown to develop tin “whiskers” (tin nanowire structures) 
that can cause catastrophic electrical shorts in electrical circuit boards, the military has not yet 
adapted the “lead-free” standard.  Furthermore, mixing of lead and “lead-free” solders may result 
in brittle and cracked joints prone to premature failure.  The continued reliability of many fielded 
military devices depends on ensuring that repairs are performed using compatible solder 
materials.  In an initial “proof of principle” study, we investigated the potential of LIBS for 
characterizing solder compositions (66).  Figure 6 shows LIBS spectra comparing a Pb-
containing solder and a Pb-free solder.  As shown in table 2, 100% of the test spectra from seven 
solder types were correctly identified as Pb-containing or Pb-free. 
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Figure 6.  Single-pulse LIBS spectral comparison of Pb-containing and Pb-free solders. 

 

Table 2.  Summary of results from the chemometric analysis of solder materials. 
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Another example application is a recent study characterizing steel samples (67).  Figure 7 shows 
several spectral regions of LIBS spectra from three steel alloys.  The need to analyze steel 
samples for their chemical composition is important for process control.  Most methods currently 
employed generally require sample preparation steps and off-site analysis.  Benet Laboratories 
(U.S. Army ARDEC) wanted to determine slight discrepancies in the composition of steel parts.  
Benet provided several steel samples to ARL, and a laboratory bench-top LIBS system was used 
to confirm that the steel samples provided were 4130 steel standards.  Based on the linear 
correlation of the steel sample spectra with a spectral library, we were able to confirm the 
composition of the Benet samples. 

 

 

Figure 7.  Single-pulse LIBS spectra of three NIST-certified standard reference steel alloys. Observed minor 
constituents include Co, Cr, W, Ni, and Mo. 

 
One interesting application of LIBS that has not been thoroughly studied is the relationship 
between emission intensities and material hardness.  According to Tsuyuki et al. (68), the speed 
of the shock front generated during plasma formation depends on the material hardness.  Thus, 
the extent of ionization caused by the shock wave can be related to the material hardness.  
Tsuyuki et al. compared the compressive strength of concrete samples (including cement 
powders on surfaces of different hardness) to the ratio of the intensities of an ionized calcium 
atomic emission line, Ca II (396.8 nm) and a calcium atomic emission line, Ca I (422.6 nm).  
Similarly, Abdel-Salam et al. (69) demonstrated the correlation between ionized/ atomic 
emission ratios, Ca II (373.69 nm)/Ca I (428.9 nm) and Mg II (280.26 nm)/Mg I (285.22 nm), 
and the hardness of calcified tissue samples.  Recently, ARL investigated the correlation between 
the hardness of a substrate and the ability to discriminate explosive residues on that substrate (41). 

3.3 Surface Cleaning/Depth Profiling 

Laser ablation has been used as a method for surface cleaning and restoration (16, 70–72).  
Unlike conventional methods, laser-based cleaning techniques do not rely on the use of 
mechanical (abrasive methods, jet spraying, etc.) or chemical solvents that can lead to 
inadvertent damage to the substrate (70).  Advantages of laser-based cleaning methods include 
the ability to automate, selectivity, versatility, and a high degree of precision.  The precise laser 
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processing parameters must be carefully optimized for each application.  With LIBS, the removal 
of small amounts of degraded or contaminated material from the surface of a substrate is 
combined with the simultaneous detection of the surface composition.  Therefore, the 
composition of each layer of material removed can be identified (depth profiling) and the 
complete removal of contamination signified (surface cleaning).  In addition to the restoration of 
artwork and cultural heritage items, laser ablation has been used for the removal of unwanted 
coatings from a substrate (e.g., the removal of polymeric coatings from a metallic substrate).  
Figure 8 shows the paint layer on a car panel from a 1985 red Toyota pickup and the bare metal 
(titanium alloy) underneath the paint, which was revealed by sequential laser pulses.  Besides 
depth profiling (73), other applications include surface texturing (74) and surface coating (75). 

 

 

Figure 8.  Standoff LIBS spectra of a car panel from a 1985 red Toyota pickup.  The red paint 
layer and bare metal were analyzed by sequential laser pulses.  The inset shows the 
C and Si emission lines present only in the paint. 

 
3.4 Origin Determination 

The LIBS spectra, which provide a detailed ‘fingerprint’ describing elemental composition and 
material properties (e.g., hardness, reflectivity, heat capacity, etc.) for each target material, can 
also be used to determine the origin of a sample.  For example, our laboratory has used LIBS 
spectra (in combination with chemometric analysis) to determine provenance or locality 
information for various geological samples such as sea shells and soils (18), obsidians (76), and 
historic volcanic rocks (figure 9) (77).  Counterfeiting of precious stones is a long-standing 
problem for the legitimate gem industry.  The chemical composition of a gem, especially the 
concentration of trace elements, contains a chemical fingerprint of the composition of the 
environment in which the mineral crystallized.  Because of evidence that gems are used as a 
source of funding for terrorist activities (27), we also investigated the use of LIBS to identify the 



 9

 

Figure 9.  Representative broadband LIBS spectra of historic volcanic rocks primarily composed of SiO2.  The 
source volcano and eruption period (for all 10 specimen types) were 100% identified using 
chemometric analysis (77). 

 
source (geographic region, local area, or specific mine) of beryl (27, 28, 30, 31) and garnet (78) 
gemstones.  Other promising potential applications for LIBS yet to be explored include the 
determination of the geographic origin of food, clothing, and other manufactured goods, as well 
as illicit substances such as drugs, counterfeit goods, and laundered money.  It may even be 
possible to pinpoint specific manufacturing facilities based on trace impurities. 

3.5 Compositional Mapping 

Because the laser is focused tightly on the sample surface for LIBS, spatial localization is an 
inherent attribute of LIBS.  Depending on the laser wavelength, beam divergence, beam mode 
quality, and focusing optics, lateral resolution on the order of 10 m can be obtained (73).  LIBS 
has been used for compositional mapping, i.e., spatial mapping of the elemental composition of a 
sample, for a number of applications including: image mapping a copper conductor pattern from 
a printed circuit board (79), field analysis of inorganic wood preservatives (80), generating 
distribution maps of poisoning elements (phosphorous [P], Zn, and Pb) in automobile catalytic 
converters (81), large area mapping of non-metallic inclusions in stainless steel (82), scanning 
microanalysis of aluminum alloys (83), and surface mapping of granite samples (84).
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Another interesting application that has not been fully explored is the detection and mapping of 
latent fingerprints.  The detection of skin oil on a silicon wafer has been demonstrated with LIBS 
(85).  Because trace amounts of explosive residue can be transferred from fingertips to surfaces 
by an individual that has previously handled explosives (86), in theory LIBS could be used to 
simultaneously detect the explosive residue (e.g., on a door handle) and map the structural detail of 
the fingerprint, enabling identification of the individual who had been handling explosive materials. 

3.6 Forensics 

LIBS has been applied to forensic applications, including the characterization and identification 
of automobile glass (87–89), the analysis of human remains and other evidence from criminal 
investigations (90), and the detection of gunshot powder residue (91, 92).  In 2005, we 
performed a “proof of principle” study on the LIBS detection of mortar and rocket firing residues 
(93).  Figure 10 shows an example LIBS spectrum from a sample coupon swiped on the outside 
of a mortar tube after an 82-mm mortar.  Test spectra were linearly correlated against each 
spectrum in the library and the highest correlation coefficient (figure 10) was used to determine 
the identification.  The red line denotes the threshold value for identifying the residue as 
originating from the mortar.  Similar results were obtained with a residue sample acquired from 
the rear of a Bulgarian RPG tube post-firing.  With a limited library and sample set, 100% 
correct matches were achieved. 

3.7 Nanoparticle Production 

Understanding the chemical mechanisms of combustion, thermal explosion, and detonation is 
essential in order to develop more efficient explosives and propellants.  It is well known that 
two-component explosives consisting of metal particle fuels and oxidizers can produce more 
than twice as much energy as high performance molecular explosives alone (94).  In recent years 
it has been suggested that nanometer-scale metal particles would provide faster energy release 
and better control over material properties, but the development of nanoenergetic materials has 
been hampered by the lack of fundamental knowledge of the chemical dynamics involved.  
Recently, we demonstrated the feasibility of a novel approach for studying the chemical 
reactions between metallic nanoparticles and molecular explosives (95).  This method is based 
on the production of nanoparticles in a laser-induced plasma and the simultaneous observation of 
the LIBS emission characteristic of the species involved in the intermediate chemical reactions 
of the nanoenergetic material in the plasma. 

Time-resolved, broadband emission of chemical species involved in the reaction of RDX and 
various metal nanoparticles was observed (figure 11).  The increase in C2 and AlO emission with 
increasing Al content previously observed during an aluminized-RDX explosion in a shock tube 
(96) was confirmed using this method.  The time-evolution of species formation in the plasma, 
the effects of laser pulse energy, and the effects of trace metal content on chemical reactions 
were also studied.  This method provides ARL with new capabilities for nanoenergetic material
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Figure 10.  LIBS spectra of a sample coupon swiped on the outside of a mortar tube 
after an 82-mm mortar fire (top) and the linear correlation coefficients 
(bottom) for discrimination of the mortar residue from other sample types.  
The red line denotes the threshold value for identifying the residue as 
originating from the mortar. 

 
evaluation and formulation, and has several advantages:  (1) minimal sample preparation is 
required, (2) real-time, time-resolved analysis of chemical reaction intermediates can be 
achieved, (3) it uses small-scale, high-temperature reactions that do not require containment 
equipment, and (4) the ratio of fuel/oxidizer is not limited by the need to cast the explosive 
formulation.  By monitoring the emission intensity of the different reactant species as a function 
of time, a better understanding of the chemistry of metallic nanoparticles and explosives at high 
temperatures could be achieved, eventually enabling the development of improved explosive 
formulations with higher explosive power and fewer harmful by-products.  
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Figure 11.  Emission intensities from time-resolved double-pulse spectra of RDX on Al in air at various 
delay times.  While the concentration of atomic species slowly decreases over the first 10 s, 
recombination reactions result in higher concentrations of CN, C2, and AlO as the plasma cools. 

 

4. Available Equipment and Software 

At ARL, we have access to a variety of lasers, spectrometers, optics, optomechanics, and 
diagnostic equipment.  We can configure laboratory LIBS setups for just about any type of 
sample/application.  The primary laser type we use is a Nd:YAG laser (manufacturers include 
Big Sky Laser, Quantel USA, and Continuum, Inc.).  Our Nd:YAG lasers provide nanosecond 
pulses at 1064 nm (or at 532, 355, or 266 nm with the proper doubling crystals and the more eye-
safe 1.57 m with the appropriate conversion module).  The pulse energy can range from as little 
as 1 mJ to 2 J depending on laser size and wavelength.  We have a wide range of spectrometers 
that include Czerny-Turner designs and echelle-type spectrographs from Ocean Optics, Inc., 
Avantes, Andor Technology, Catalina Scientific, and others.  Available detectors include charge 
coupled devices (CCDs), intensified CCDs (ICCDs), and electron multiplying CCDs 
(EMCCDs).  In addition to Nd:YAG lasers, we also have a femtosecond Ti-Sapphire system 
(Coherent Hidra) with laser pulse widths <120 fs (pulse energies up to 25 mJ) and an Optical 
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Parametric Oscillator (OPO) laser system (Continuum Sunlite) which provides tunable  
(240–1700 nm) nanosecond laser pulses.  Commercially available LIBS systems in our lab 
include products from Ocean Optics, Inc. and Applied Photonics, Ltd., as well as a microwave-
enhanced LIBS system (laser assisted microwave plasma spectroscopy, LAMPS) from Photon 
Machines, Inc.  We also have two prototype standoff LIBS instruments that can collect spectra 
ranging from 10 to 100 m. 

For sample preparation, we have a commercial inkjet-based printing platform (Microbfab 
Jetlab4).  This system enables quantitative sample deposition on a variety of surfaces and 
complex print job definition through scripting.  It is currently being used to determine limits of 
detection for explosive residues using LIBS. 

With funding from ARL, Signal Innovations Group has recently developed software to automate 
the chemometric analysis of LIBS data with algorithms developed at ARL.  This software has 
provided ARL with the capability for real-time identification of materials based on LIBS.  A 
video demonstration of the identification of biological powders using the automation software 
and ARL-developed algorithms is available on our website at http://www.arl.army.mil/www 
/default.cfm?Action=247&Page=462.  The software can be adapted to work with any LIBS 
system for any application. 

 

5. Conclusions 

While the primary focus of LIBS at ARL has been hazardous material detection, LIBS has a 
number of other applications that could benefit the U.S. Army.  Since the broadband 
spectrometers observe every element on the periodic table, the composition of any material can 
be determined.  Broadband LIBS spectra coupled with advanced chemometric analysis can 
provide a wealth of information about a particular sample.  While the applications are seemingly 
limitless, the best applications will utilize the strengths of LIBS, e.g., speed of analysis, 
flexibility of experimental design, and lack of sample preparation. 
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